
I N P U T F O R N I T R D F I V E - Y E A R P L A N
A U G U S T 2 0 0 8

Cyber-Physical Systems

This paper could apply to any area of software practice, but its suggestions are especially
important for Cyber-Physical Systems (CPS). The area deserves the effort. By their embedded
nature, CPS are low profile, and the area has been under-served by CS/SE research. However, CPS
are critical to many US industries, they are knitted into the modern lifestyle, and defective cyber-
physical systems can be deadly. This paper focuses on exploiting the potential of interagency
projects with the cooperation of industry partners in ways that could ameliorate long-standing
problems that are especially troublesome to CPS.

This paper suggests strategies to address two complaints:

1. Researchers argue that their ideas improve the software development process, but their
research doesn’t provide convincing evidence. They ask us to “bet the company” on new ideas
supported by anecdotes and arguments. If they have experimental evidence, it is often based
on experience with a few students working on small projects. Almost all embedded software
developers are deeply conservative about the way they build software. They need convincing
reassurance before they will adopt new technologies.

2. Either researchers don’t attack the problems that bother practitioners, they have addressed
those problems and the results are not implemented in commercially available software and
well-documented methodologies, or wonderful things have been offered to us in attractive
packages and we’ve ignored them. The latter is unfortunately likely. (See the first complaint.)

Validate Research Results Using Real Software Development

Any large software project could be an opportunity to test and compare development tools
and methodologies. Some large software projects have been used to test new ideas, but I don’t
know of a case where a real software project was used to compare competing ideas (except,
maybe, the control software for the space shuttle). The data generated by a comparison is more
useful than the data from a test. To take an example that would be of special interest to me, a test
can show that the RTSJ is useful for a large real-time software project, but a comparison would
show its strengths and weaknesses relative to alternative technologies.

A software development project can be used to generate comparative data by duplicating the
appropriate part of the project in at least two separate and equivalent sets of groups using
different tools/methodologies/whatever. To be statistically valid, there should be several groups in
each set. 1 This approach can be used to get experimental data on many questions that trouble
software engineers, but it will be expensive. A single instance of a “real” software project may cost

Peter Dibble TimeSys

1 Maybe statistical trickery can let one experiment answer several questions, giving better value for
these experiments.

The opinions and positions in the white papers and comments posted on this web site are those of the submitters only and do not necessarily represent those of the Federal government,
the NITRD program and its participating agencies, or the National Coordination Office.

millions of dollars. Replicating it n times with suitable experimental measurement and isolation
could cost more than n times the cost of a single instance.

Interagency cooperation, and cooperation with industry, may make suitable projects available
for this kind of research. DoD, automotive companies, NASA, aerospace companies, DOE, and FAA
have large, demanding software projects that would be excellent candidates for experimentation.
Other problems include: finding worthwhile questions whose answers are measurable (statistics
only helps when there’s something meaningful to measure), and convincing the owners of the
projects to let them be used this way.

This type of experiment seems likely to be most useful in two scenarios: evaluating broad
research directions early in the R&D process, and demonstrating the usefulness of ideas that seem
powerful to the research community but are not immediately accepted by practitioners.

Build Research and Development Communities

From a pragmatic viewpoint, research doesn’t matter unless it improves real software products,
or makes software production more efficient. From this viewpoint some aspects of operating
system software, compiler software, software project management, data base technology, and
networking get attention. Other important areas are mainly neglected.

I spend much of my life testing and debugging software, but over the past 25 years few
breakthroughs have appeared in the testing/debugging software that I use. I wish those products
were advancing faster. If CS/SE R&D were proportioned according to my workload, about half its
effort would be directed at improving testing and debugging technology.

It might help focus researchers’ efforts if CS/SE research groups were tightly coupled to users.
Tying the groups together would make it easy for the researchers to understand the problems
facing developers, and create a tight feedback loop that might engender useful new research and
uncover ideas that have been composting in research libraries. A “real” software project might resist
being asked to use tools with less-than-professional polish. That problem can be lessened by
including a professional software company in the community.

I envision a systems group from CMU dedicated to providing improved systems software for
the Mars lander team at JPL, with the JPL team having a matching commitment to depend on
systems software from the CMU team, and a software product team from IBM putting a
professional polish on the CMU software and providing first rate documentation and support. It
might be best if the three groups were located together.

The teams should collaborate through several generations of the product.

Not all important work is done by large groups. It would be hard, but useful, to build
communities to focus researchers’ attention on tools and methodologies for development teams
with fewer than six members.

Peter Dibble TimeSys

The opinions and positions in the white papers and comments posted on this web site are those of the submitters only and do not necessarily represent those of the Federal government,
the NITRD program and its participating agencies, or the National Coordination Office.

